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those obtained using grid-based methods tailored for spe-
cific problems. Moreover, SPH can be more computation-The method of smoothed particle hydrodynamics (SPH) is ex-

tended to model incompressible flows of low Reynolds number. ally expensive than alternative techniques for a given appli-
For such flows, modification of the standard SPH formalism is re- cation.
quired to minimize errors associated with the use of a quasi-incom- For typical astrophysical applications, SPH is used to
pressible equation of state. Treatment of viscosity, state equation,

model compressible fluids at high Reynolds number (usu-kernel interpolation, and boundary conditions are described. Simu-
ally Re $ 103 [4]). Although SPH has been used to modellations using the method show close agreement with series solu-

tions for Couette and Poiseuille flows. Furthermore, comparison free surface flows of inviscid incompressible fluids [3], and
with finite element solutions for flow past a regular lattice of cylin- some research has been performed using SPH for com-
ders shows close agreement for the velocity and pressure fields. pressible gases with Reynolds numbers down to five [5],
The SPH results exhibit small pressure fluctuations near curved

low Reynolds number (Re # 1) incompressible flows haveboundaries. Further improvements to the boundary conditions may
not been modeled using SPH. The objective of this paperbe possible which will reduce these errors. A similar method to that

used here may permit the simulation of other flows at low Reynolds is to present modifications of the standard SPH formalism
numbers using SPH. Further development will be needed for cases needed to simulate such flows. Treatment of viscosity,
involving free surfaces or substantially different equations of equation of state, kernel interpolation, and boundary con-
state. Q 1997 Academic Press

ditions are described. Simulations using the method show
close agreement with series solutions for Couette and
Poiseuille flows and with finite element solutions for flow1. INTRODUCTION
past a regular lattice of cylinders.

The study of incompressible fluid flows in which viscous
forces are either comparable with or dominate inertial

2. THE METHOD
forces has applications to many physical problems. Indus-
trial, biological, and environmental processes often involve 2.1. Background
flows of low Reynolds number (Re). Many applications

Using SPH the fluid is represented by particles, typicallyto the fields of environmental, mechanical, chemical, and
of fixed mass, which follow the fluid motion, advect contactpetroleum engineering likewise involve slow viscous in-
discontinuities, preserve Galilean invariance, and reducecompressible flows through filters, substrates, porous mate-
computational diffusion of various fluid properties includ-rials, and other potentially deformable structures.
ing momentum. The equations governing the evolution ofSmoothed particle hydrodynamics (SPH), while origi-
the fluid become expressions for interparticle forces andnally developed for astrophysical applications [1, 2], has
fluxes when written in SPH form. Using the standard ap-been applied successfully to a wide range of problems.
proach to SPH [6, 7], the particles (which may also beSPH is a fully Lagrangian technique in which the numerical
regarded as interpolation points) move with the local fluidsolution is achieved without a grid. An advantage of SPH
velocity. Each particle carries mass m, velocity v, and otheris the relative ease with which new physics may be incorpo-
fluid quantities specific to a given problem. The equationsrated into the formulation. It is also straightforward to
governing the evolution of fluid quantities are expressedallow boundaries to move or deform and to model the
as summation interpolants using a kernel function W withinteraction of several fluid phases bounded by a free sur-
smoothing length h. For example, the density at particleface. SPH has certain advantages over other fluid dynami-
a, ra , may be evaluated usingcal methods, which may, for example, encounter difficulty

with deformable boundaries, multiphase fluids, free sur-
faces, and the extension to three dimensions. While SPH ra 5 O

b
mbWab , (1)

is a versatile method, errors can sometimes be larger than
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where Wab denotes usually only important for faster flows involving shocks.
The simulations presented here, therefore, use (6) to
evolve density.Wab 5 W(rab , h) (2)

2.3. Dynamic Pressureand

For low Reynolds number flows, local variations in the
rab 5 ra 2 rb , (3) pressure gradient which force the fluid motion can be very

small, compared with the hydrostatic pressure gradient.
where ra denotes the position of particle a. The kernel This is of special significance to SPH, since pressure is
typically takes the form obtained using an explicit function of density and is only

accurate to about 1% (see the following section). For many
problems it is simpler to use SPH to model the dynamicW(rab , h) 5

1
hs

f Surabu
h D , (4)

pressure, pd , defined as

where s is the number of dimensions and the function f pd 5 pt 2 ph , (7)
is discussed in Section 2.7. Other expressions for quantities
at the particles are obtained by summation involving the where pt and ph are the total and hydrostatic pressures,
kernel or its derivatives. For example, the most common respectively. Since pressure appears in the Navier–Stokes
SPH expression for the pressure gradient term is equations only as a gradient, the effect of ph is that of a

body force,

2 S1
r

=pD
a

5 2 O
b

mb Spa

r2
a

1
pb

r2
b
D =aWab , (5)

2
1
r

=pt 5 2
1
r

=pd 2
1
r

=ph ,
(8)where pa is the pressure at particle a and =a denotes the

gradient with respect to the coordinates of particle a. For a 5 2
1
r

=pd 1 F,
kernel of the form in (4), this pressure gradient formulation
conserves momentum exactly, since forces acting between
individual particles are antisymmetric. where F is a force per unit mass. Using this approach,

The following sections consider specific aspects of the pressure gradient driven flow through a periodic lattice can
SPH formalism and the approaches necessary to simulate be easily simulated (see Section 3.3). Periodic boundary
incompressible flows at low Reynolds number. conditions are applied to all fluid quantities and the flow

is driven by the effective body force. The dynamic pressure
2.2. Evolution of Density is modeled using the equation of state (see (10) in Section

2.4). For simplicity, p is used in the following sections toIf (1) is used when modeling incompressible free-surface
denote the dynamic pressure pd .flows, particle density is smoothed out at the edge of the

fluid and spurious pressure gradients are induced at the
2.4. Equation of Statesurface. To avoid this problem, Monaghan [3] initially set

the density to a reference value and evolved particle densi- Most grid-based techniques model the flow of water
ties according to the following SPH equation for continuity: as incompressible since the speed of sound in water is

usually large compared with bulk fluid motions (i.e., a very
low Mach number). Using SPH, fluid pressure is an explicitdra

dt
5 O

b
mbvab ? =aWab . (6)

function of local fluid density and particle motions are
driven by local density gradients. Therefore, it is necessary
to use a quasi-incompressible equation of state to modelOur test cases do not involve free surfaces, and thus (1)

may be used to evolve particle densities. One disadvantage such flows with SPH. Since the actual equation of state for
water would require a prohibitively small time step forof this approach is that r must be evaluated by summing

over the particles before other quantities may be interpo- stability (by the CFL condition [8]), an artificial state equa-
tion is used. The chosen sound speed is low enough to belated. However, (6) allows r to be evolved concurrently

with particle velocities and other field quantities, thus sig- practical, yet high enough to limit density fluctuations to
within 3%. A similar approach has been used in grid-basednificantly reducing the computational effort. While (6)

does not conserve mass exactly ((1) does, provided the techniques to model steady incompressible flow [9–11].
Previous applications of SPH to incompressible flowstotal number and mass of particles are constant), this is
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[3–12] have employed a state equation suggested by Bat- dv
dt

5 2
1
r

=p 1 n =2v 1 F, (11)chelor [13],

where n is the kinematic viscosity and F is a body force
p 5 p0 HS r

r0
Dc

2 1J , (9) per unit mass. Substituting a velocity scale V0 , a length
scale L0 , and a body force per unit mass of magnitude F
into (11), we find that the square of the sound speed should

where c 5 7 and a zero subscript denotes reference quanti- be comparable with the largest of
ties. The choice of c 5 7 in (9) causes pressure to respond
strongly to variations in density. Thus, perturbations to the
density field remain small, even at high Reynolds numbers. c2 p

V 2
0

d
,
nV0

L0d
,
FL0

d
, (12)

However, as the density fluctuations increase, small errors
in density correspond to increasingly larger errors in pres-

wheresure. For lower Reynolds numbers, more accurate pressure
estimates are obtained using SPH if c is taken to be unity
(as it is in [9–11]), since errors in density and pressure d 5

Dr

r0
. (13)

remain proportional.
In previous work involving incompressible fluids, the

The first term in (12) corresponds to that derived bysubtraction of 1 in (9) was introduced to remove spurious
Monaghan [3]. The second and third terms ensure thatboundary effects at a free surface. It is well established
pressure forces are comparable with viscous and bodythat SPH is unstable when attractive forces act between
forces, respectively. These conditions should only be re-particles [14–17, 29]. Consequently, for the simulations
garded as a guide to an estimate of an appropriate soundpresented in Section 3, this subtraction was found to lead to
speed. After a simulation has been run initially at lownumerical instabilities in regions of sustained low pressure.
resolution and the actual variation in p is known, the valueSince the test simulations (and many applications) have
of c can be changed to produce the desired density vari-particles filling all space, this work uses
ation.

p 5 c2r, (10)
2.5. Boundary Conditions

Initial applications of quasi-incompressible SPH in-where c is the speed of sound.
The sound speed must be chosen carefully to ensure volved high Reynolds number simulations of free surface

flows interacting with free-slip boundaries. Such work em-both an efficient and accurate solution of a given problem.
The value of c must be large enough that the behavior of ployed boundary particles which exerted strong repulsive

forces to prevent SPH particles from penetrating solid sur-the corresponding quasi-incompressible fluid is sufficiently
close to that of the real fluid, yet it should not be so large faces [3, 19, 20]. To realistically model flows at lower Reyn-

olds numbers, no-slip boundary conditions are needed. Inas to make the time step prohibitively small. Using a scale
analysis, Monaghan [3] argued that, for density to vary by addition, for the free surface flows considered by Mo-

naghan [3], boundary particles do not contribute to theat most 1%, the Mach number of the flow should be 0.1
or less. In fact, for typical smoothing lengths used with density of the free SPH particles, thus permitting the fluid

to freely leave a solid boundary with no pressure-drivenSPH, kernel interpolation is only accurate to within ap-
proximately 1%. The principal cause of this variation is restoring force. For our work, boundary particles contrib-

ute to the density of fluid particles such that pressure de-small fluctuations in density which inevitably occur as parti-
cles move past one another. Thus, pressure gradients ob- creases when fluid and boundary particles diverge. It is

possible to implement such a boundary condition usingtained using a high sound speed are potentially noisy. Nev-
ertheless, the velocities obtained are accurate if smoothed image particles [21]. These images are created by reflecting

fluid particles across the boundary with opposite velocities.either by XSPH [18] or viscosity. For many applications,
a close estimate of bulk fluid motion is sufficient. However, This procedure works well for straight channels, but intro-

duces density errors for curved surfaces. Takeda et al. [5]for other problems, accurate estimates of the pressure field
are needed. We found that computed pressures are in close achieved a no-slip boundary condition using special bound-

ary terms which mimic a half-space filled with SPH imageagreement with other techniques when c is chosen such
that the density varies by at most 3%. particles. While these approaches have proved useful for

compressible and moderate to high Reynolds numberIt is possible to estimate an appropriate value of c by
considering the balance of forces in the Navier–Stokes flows, we found they did not give sufficiently stable results

for our simulations.momentum equation,
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In this work, actual SPH particles are used to represent a
no-slip boundary surface. These particles contribute to the
usual SPH expressions for density and pressure gradients,
and their own densities are also evolved. Evolving the densi-
ties of boundary particles was found to better capture peak
pressures than if boundary densities were kept constant.
Obstacles within the flow are created by placing all the parti-
cles on a regular lattice throughout the computational do-
main and designating those particles falling within a solid
object to be boundary particles. The advantage of this ap-
proach is that a ‘‘quiet’’ start is guaranteed since the particle
number density is initially constant throughout the compu-
tational domain. However, it can lead to an imperfect repre-
sentation of a curved boundary at low resolution. An alter-
native would be to place boundary particles on the surface FIG. 1. Construction of artificial velocity for boundary particles to

simulate a no-slip boundary condition.of each obstacle. One difficulty with this method is ‘‘filling’’
the fluid space with a distribution of free particles corre-
sponding to constant density. In this case, the initial config-
uration can be ‘‘relaxed’’ to a quiet state before driving

b 5 min Sbmax , 1 1
dB

da
D . (15)forces are applied. The former approach was used in this

work for simplicity.
A first-order no-slip condition can be created if boundary

Numerical simulations have shown that good results are
particles are moved with the velocity of the object to which

obtained if bmax is approximately 1.5. If the boundary is in
they are attached. However, this approach can produce sig-

motion, va in (14) should be replaced by the fluid velocity
nificant errors in velocity near boundaries. Antisymmetry

relative to the boundary. The artificial velocity vB is used to
can be approximated by extrapolating the velocity of free

calculate viscous forces (see Section 2.6)), but it is not used
particles through the boundary to the position of the bound-

to evolve boundary particle positions. Consequently, the ac-
ary particles. Ideally, a local estimate of the velocity gradi-

tual boundary velocity is used in (6) such that densities re-
ents at the surface of the boundary would be used to assign

main consistent with (1). For concave surfaces, a similar
these artificial velocities to interior points; however, such

method could be used in which the tangent plane is con-
estimates would require a second summation over the parti-

structed by considering the nearest point on the curve to
cles and, hence, a substantial increase in the computa-

each boundary particle (rather than fluid particle). The two
tional effort.

methods give identical results for a plane surface.
This work uses a simpler approach which is stable, accu-

There are alternative techniques which take boundary
rate, and requires little extra computation. The method is

curvature into account. For example, Monaghan [19, 20] in-
similar to that used by Takeda et al. [5] to obtain a functional

troduced special boundary particle formulations in the con-
form for the viscous force due to a solid boundary. Figure 1

text of high Reynolds number free-surface flows which ex-
illustrates the concept for a portion of a curved boundary.

plicitly account for local curvature effects when calculating
Foreachfluid particlea, thenormal distancedato thebound-

the contribution from boundary particles. This approach
ary is calculated. This normal is used to define a tangent

can reduce the noise otherwise introduced by a discrete
plane (a line in two dimensions) from which the normal dis-

boundary representation. Similar improvements to the
tance dB to each boundary particle B is calculated. The ve-

boundary conditions employed here, incorporating ap-
locity of particle a is extrapolated across the tangent plane,

proaches taken by other authors for high Reynolds number
assuming zero velocity on the plane itself, thus giving each

problems, are the focus of further investigation.boundary particle velocity vB 5 2(dB/da)va . In practice, the
discrete arrangement of boundary particles may permit a

2.6. Viscosity
fluid particle to closely approach the nominal curve describ-
ing the boundary. In such circumstances, the magnitude of Most implementations of SPH employ an artificial vis-
vB must be restricted. Accordingly, the following formula is cosity first introduced to permit the modeling of strong
used to calculate relative velocities between fluid and shocks [6, 7]. This viscosity is incorporated into the momen-
boundary particles, tum equation

vab 5 bva , (14) dva

dt
5 2 O

b
mb Spa

r2
a

1
pb

r2
b

1 PabD =aWab , (16)
where
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where dva

dt
5 2 O

b
mb Spa

r2
a

1
pb

r2
b
D =aWab

(22)

1 O
b

mb(ea 1 eb)vab

rarb
S 1

rab

­Wab

­ra
D1 Fa ,Pab 5 5

2acẽab 1 bẽ2
ab

rab
, if vab ? rab , 0;

0, otherwise,

(17)

where Fa is the body force evaluated at particle a.

ẽab 5
hvab ? rab

r2
ab 1 0.01h2 , (18)

2.7. The Kernel

There are many possible choices of the function f in (4).
and rab is the average density of particles a and b. The Most SPH simulations employ a cubic spline kernel [27, 28],
0.01h2 term is included to keep the denominator nonzero.
Although this formulation has been used to model real
viscosity [4, 22], it produced inaccurate velocity profiles for
our simulations. The advantage of (16) is that it guarantees

f(s) 5
10
7f 51 2 3s2/2 1 3s3/4, if 0 # s , 1;

(2 2 s)3/4, if 1 # s , 2;

0, if s $ 2

(23)conservation of angular momentum, which is important
for applications involving relatively large fluid velocities
or an unbounded fluid edge. Since this work involves low
velocities and SPH particles fill all space, a more realistic

(here normalized for two dimensions), since it resemblesform of viscosity has been adopted. Previous expressions
a Gaussian while having compact support. However, it hasused to calculate realistic viscous forces have typically in-
been shown that SPH can be unstable to transverse modesvolved nested summations over the particles [23, 24] (and,
when kernels with compact support are used [14, 17, 29].hence, twice the computational effort), or have directly
As higher-order splines more closely approximating aemployed second derivatives of the kernel [5]. The disad-
Gaussian are employed, these instabilities are reduced.vantage of using second derivatives is that interpolation is
One reason for the poor performance of lower-ordermuch more susceptible to error at low resolution (espe-
splines is that the stability properties of SPH dependcially for low-order spline kernels [25]). Our method em-
strongly upon the second derivative of the kernel. Theploys an SPH estimation of viscous diffusion which is simi-
second derivative of the cubic spline is a piecewise-linearlar to an expression used in [26] to model heat conduction,
function, and, accordingly, the stability properties are infe-
rior to those of smoother kernels. For example, when the
quintic spline [27] is used,HS1

r
= ? e=D v J

a
5 O

b

mb(ea 1 eb)rab ? =aWab

rarb(r2
ab 1 0.01h2)

vab , (19)

where e 5 rn is the dynamic viscosity. This hybrid expres-
sion combines a standard SPH first derivative with a finite

f(s) 5
7

478f 5
(3 2 s)5 2 6(2 2 s)5 1 15(1 2 s)5, 0 # s , 1;

(3 2 s)5 2 6(2 2 s)5, 1 # s , 2;

(3 2 s)5, 2 # s , 3;

0, s $ 3,

difference approximation of a first derivative. By taking a
Taylor expansion about particle a, it can be shown that this
expression is appropriate [26]. This formulation conserves
linear momentum exactly, while angular momentum is only (24)
approximately conserved. If the kernel takes the form of
(4) then

transverse mode instabilities are negligible [14, 29]. For
most applications using a cubic spline, these instabilities are
not important since the resulting perturbations in density=aWab 5

rab

urabu
­Wab

­ra
(20)

typically peak at about 1%. However, for a quasi-incom-
pressible equation of state, such variations are significant
(see Section 2.3). Thus, for simulations involving very lowand we can simplify (19) to
Reynolds numbers, it was found that a cubic spline rapidly
produced significant noise in the pressure and velocity
fields, whereas simulations employing the quintic splineHS1

r
= ? e=D vJ

a
5 O

b

mb(ea 1 eb)vab

rarb
S 1

rab

­Wab

­ra
D . (21)

remained stable. Although the quintic spline is computa-
tionally more intensive (by approximately a factor of 2),
it was found to be the most reliable for our simulations.Thus, the momentum equation is written as
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Morris [29] presents a discussion of alternative kernels velocities are evolved according to (22). To ensure stability
of the integration scheme, the time step is limited accordingwhich have superior stability properties to standard cubic

splines with no extra computational expense. It is not clear, to the conditions set forth in Section 2.8. No-slip boundary
conditions are simulated by assigning artificial velocities tohowever, if these kernels represent a significant improve-

ment over the quintic spline for a given region of support the boundary particles using (14).
for this application.

3. MODEL TESTING AND VERIFICATION
2.8. Time Integration

3.1. Couette Flow
A modified Euler technique was used to perform the

time integration. For stability, several time step criteria The first test case is Couette flow between infinite plates
located at y 5 0 and y 5 L. The system is initially at rest.must be satisfied, including a CFL condition [8],
At time t 5 0, the upper plate moves at constant velocity
V0 parallel to the x-axis. The series solution for the time-

Dt # 0.25
h
c

, (25)
dependent behavior of this flow is

and additional constraints due to the magnitude of particle
vx(y, t)5

V0

L
y1Oy

n51

2V0

nf
(21)n sin Snf

L
yD exp S2n

n2f 2

L2 tD ,accelerations fa [7],

(28)

Dt # 0.25 min
a
Sh

fa
D1/2

, (26)
where vx is the fluid velocity in the x-direction. The flow
was simulated using SPH for n 5 1026m2s21, L 5 1023m,

and viscous diffusion, r 5 103kgm23, V0 5 1.25 3 1025ms21, and with 50 particles
spanning the channel. This corresponds to a Reynolds
number of 1.25 3 1022, usingDt # 0.125

h2

n
. (27)

Equation (27) is based upon the usual condition for an ex- Re 5
V0L

n
. (29)

plicit finite difference method simulating diffusion. At suf-
ficiently high resolution (small h) or large viscosity, (27) is

Figure 2 shows a comparison between velocity profilestypically the dominant time constraint. The choice of kernel
obtained using (28) and SPH at several times including theand the arrangement of particles influences the coefficients
steady state solution (t 5 y). The results are in closein (25)–(27). In particular, different splines can have differ-
agreement (within 0.5%), confirming the accuracy of theent ‘‘effective’’ resolution lengths for the same value of h.
approach used to evaluate viscous and boundary forcesFor example, use of a cubic spline (which is ‘‘narrower’’ than
with SPH. Lower resolution simulations completed witha quintic for the same smoothing length) may require
20 particles spanning the channel were found to agree toslightly smaller coefficients in the above expressions.
within approximately 2% of the series solution values.

2.9. Summary of the Method
3.2. Poiseuille Flow

A summary of the method to simulate quasi-incompress-
The second test case is Poiseuille flow between stationaryible flow at low Reynolds number using SPH can now be

infinite plates at y 5 0 and y 5 L. The fluid is initially atpresented. The particles are placed on a hexagonal lattice
rest and is driven by an applied body force F parallel tofilling all space and assigned a constant initial density (r0).
the x-axis for t $ 0. The series solution for the transientBoundary particles are defined as those initially lying inside
behavior isobstacles within the flow field and beyond solid walls. The

equation of state for the fluid is given by (10) and the sound
speed c is chosen such that density fluctuations are at most vx(y, t) 5

F
2n

y(y 2 L) 1 Oy
n50

4FL2

nf 3(2n 1 1)3

(30)3%. In the caseof periodicflow drivenby an appliedpressure
gradient, the dynamic pressure (7) is used and the applied
pressure differential is simulated by an applied body force sin Sfy

L
(2n 1 1)D exp S2

(2n 1 1)2f 2n
L2 tD .

(8). For stability at low Reynolds numbers, a quintic spline
kernel is used with a smoothing length of 1.5 times the initial
nearest neighbor distance. Particle densities are evolved us- SPH was used to simulate Poiseuille flow for n 5 1026m2s21,

L 5 1023m, r 5 103kgm23, F 5 1024ms22, and 50 particlesing (6) to reduce the computational effort, and the particle
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FIG. 2. Comparison of SPH and series solutions for Couette flow (Re 5 1.25 3 1022).

spanning the channel. This corresponds to a peak fluid spanning the channel agreed to within approximately 2%
of the series solution values.velocity V0 5 1.25 3 1025ms21 and a Reynolds number of

1.25 3 1022 using (29). A comparison between velocity
profiles obtained using (30) and SPH appears in Fig. 3.

3.3. Flow through a Periodic Lattice of Cylinders
The results are again in close agreement, with the largest
discrepancy being about 0.7% for the steady state solution. The Couette and Poiseuille simulations tested the inter-

action between viscous and body forces and the effective-Lower resolution simulations completed with 20 particles

FIG. 3. Comparison of SPH and series solutions for Poiseuille flow (Re 5 1.25 3 1022).
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FIG. 5. Paths for comparison of SPH and FEM solutions.

FIG. 4. Single cylinder within a periodic lattice.
were obtained by interpolating the particle quantities to a
50 by 50 array of grid points using the quintic kernel.
Smoothing lengths of 1 and 3 grid spacings were used for

ness of the no-slip boundary condition in the SPH model. the velocity and pressure, respectively. A greater amount
However, these flows are one dimensional and do not of smoothing was needed to remove small fluctuations
produce variations in dynamic pressure. A more challeng- from the pressure field. Contours generated using this
ing test of the method involves flow through a square lattice method are inaccurate in the immediate vicinity of the cyl-
of cylinders. This particular configuration has been studied inder.
extensively [30–32] as a simple model of flow through Figure 6 shows a comparison of velocity profiles obtained
fibrous porous media. To solve this problem with SPH, a using SPH and FEM for paths 1 and 2 defined in Fig. 5.
single cylinder and its associated volume within the lattice The results obtained using SPH are in close agreement
is considered (Fig. 4). Flow is driven by a pressure gradient with those from the FEM throughout the flow domain.
(modeled using an effective body force F), and periodic Corresponding contour plots of velocity magnitude are
boundary conditions are applied to model an infinite peri- shown in Fig. 7. Good agreement is obtained for the bulk
odic array. of the flow, although the contour smoothing method inac-

curately represents SPH velocities near the cylinder.3.3.1. Low Reynolds Number

Periodic flow past a cylinder was simulated using SPH
for L 5 0.1 m, n 5 1026m2s21, a 5 2 3 1022m, F 5 1.5 3
1027ms22, and c 5 5.77 3 1024ms21. Replacing L with a in
(29) and taking the velocity scale to be V0 5 5 3 1025ms21

gives Re 5 1. The SPH simulation was run using approxi-
mately 3000 particles placed on a hexagonal lattice with a
nearest neighbor distance of 0.002 m. The cylinder was
modeled by considering all particles within its perimeter
to be of the type described in Section 2.5. The particles
started from rest and steady state was reached after ap-
proximately 1500 steps. To investigate long-term behavior,
the simulation was continued for another 6000 steps such
that particle arrangements became disordered. The prob-
lem was also modeled using a finite element method (FEM)
program for steady incompressible viscous flow. Velocity
and pressure distributions from the two solutions were
compared by plotting values within one nearest neighbor
distance of the four paths described in Fig. 5. The results
were also compared using contour plots. As the FEM em-
ploys a mesh to obtain a solution, it is relatively easy to FIG. 6. Comparison of SPH and FEM velocity profiles along paths

1 and 2 for Re 5 1.obtain contour plots. The corresponding plots for SPH
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FIG. 7. Contour plots of velocity magnitude using (a) FEM and (b) SPH for Re 5 1 (contour lines are labeled in units of 1024m/s).

Figure 8 shows the dynamic pressure along paths 3 FEM solutions are in close agreement. The peaks in the
pressure obtained using SPH on the boundary itself felland 4 (Fig. 5). The arc of path 3 was taken 0.002 m

(one SPH nearest neighbor distance) beyond the cylinder short of the FEM results by approximately 8%. The FEM
better captures pressure extrema since grid-stretchingboundary since the SPH boundary particles may not

necessarily lie on the boundary surface itself. The SPH increases resolution in the vicinity of the cylinder. Corre-
sponding contour plots of pressure given in Fig. 9 showdynamic pressure profile shows small local fluctuations

in the vicinity of the cylinder. Elsewhere, the SPH and that good agreement is again obtained for the bulk of
the flow. This simulation was repeated with twice the
particle resolution (approximately 11,000 particles) and
peak pressures were reproduced to within 5%. Pressure
values in the immediate vicinity of the boundary, how-
ever, still exhibited small fluctuations.

3.3.2. Very Low Reynolds Number

Flow through a periodic lattice of cylinders was also
solved for L 5 0.1 m, n 5 1024m2s21, a 5 2 3 1022m, F 5
5 3 1025ms22, and c 5 1 3 1022ms21. Taking V0 5 1.5 3
1024ms21, this gives Re 5 0.03. Once again, the simulation
was initialized with zero velocity and the steady state was
reached after approximately 1500 steps. However, the ini-
tial lattice was relatively unchanged at this point. To dem-
onstrate the long-term behavior of the method, the simula-
tion was run for another 300,000 steps. The final particle
configuration, shown in Fig. 10, was typical of those ob-
served in these simulations once the initial lattice had bro-
ken up. A comparison of velocities along paths 1 and 2
appears in Fig. 11 and velocity contour plots are shown
in Fig. 12. The results obtained using SPH are in closeFIG. 8. Comparison of SPH and FEM pressure profiles along paths

3 and 4 for Re 5 1. agreement with those obtained by the FEM. The flux
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FIG. 9. Contour plots of pressure using (a) FEM and (b) SPH for Re 5 1 (contour lines are labeled in units of 1026Pa).

through the lattice is 1.70 3 1024m/s, which agrees to within were not fully captured by SPH, the discrepancies were
somewhat smaller (about 5%). The simulation was re-3% with the analytical solution of Drummond and Tahir

[31] for Stokes flow. A comparison of pressure fields pre- peated for fewer time steps with twice the resolution (ap-
proximately 11,000 particles) and peak pressures were ob-sented in Figs. 13 and 14 also shows close agreement for

the bulk of the flow, with similar fluctuations as observed tained with less than 4% error. Once again, however, small
pressure fluctuations were observed near the boundary.for Re 5 1. Although pressure extrema on the boundary

FIG. 10. Final particle positions corresponding to the results pre- FIG. 11. Comparison of SPH and FEM velocity profiles along paths
sented for Re 5 0.03. Fluid and boundary particles are shown in black 1 and 2 for Re 5 0.03.
and gray, respectively.
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FIG. 12. Contour plots of velocity magnitude using (a) FEM and (b) SPH for Re 5 0.03 (contour lines are labeled in units of 1024m/s).

4. CONCLUSIONS AND FUTURE WORK kernel result in a method which is stable and gives accurate
estimates of velocity for problems of the type considered.

Extensions of the method of smoothed particle hydrody- Peak pressures on solid boundaries are smoothed out at
namics (SPH) have been presented which allow the simula- lower resolutions, but are achieved to within 5% for simula-
tion of incompressible flows for low Reynolds numbers. tions involving over 10,000 particles. However, pressures
Results suggest that the proposed equation of state, viscos- in the vicinity of a circular boundary exhibited local fluctu-
ity formulation, boundary conditions, and interpolation ations of several percent. Further improvements to the

boundary conditions may be possible which will reduce
these errors (see Section 2.5). Additional tests involving
convex and concave boundary surfaces are planned.

Straightforward extensions of the method are possible
which will increase its utility. For example, it is possible
to simulate the dispersion of a solute through the lattice
of cylinders described in Section 3.3. A quantity which
does not influence the flow (e.g., the concentration of a
dilute solute) may be evolved independently from one cell
to the next while still assuming the velocity and density
fields are periodic. As most of the computational expense
is associated with locating and summing over nearest
neighbors, the increase in work is moderate. A method
similar to that used here may permit the simulation of
other flows at low Reynolds numbers using SPH. However,
further development will be needed for cases involving
free surfaces or substantially different equations of state.
The extension to three-dimensional problems is, in theory,
straightforward. Obtaining steady-state results is relatively
inexpensive, however, extended simulations in three-
dimensions involving many crossing times at very lowFIG. 13. Comparison of SPH and FEM pressure profiles along paths

3 and 4 for Re 5 0.03. Reynolds numbers will probably necessitate the use of
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FIG. 14. Contour plots of pressure using (a) FEM and (b) SPH for Re 5 0.03 (contour lines are labeled in units of 1023Pa).
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226 MORRIS, FOX, AND ZHU

21. L. D. Libersky, A. G. Petschek, T. C. Carney, J. R. Hipp, and F. A. Applied Mathematics Reports and Preprints 95/18, Monash Univer-
sity, Melbourne, Australia, 1995. (unpublished)Allahdadi, High strain Lagrangian hydrodynamics, J. Comput. Phys.

109, 67 (1993). 27. Schoenberg, I. J., Contributions to the problem of approximation of
equidistant data by analytic functions, Q. Appl. Math. 4, 45 (1946).22. S. T. Maddison, J. R. Murray, and J. J. Monaghan, SPH simulations

of accretion disks and narrow rings, Publ. Astron. Soc. Aust. 13, 28. Monaghan, J. J. and Lattanzio, J. C., A refined particle method for
66 (1996). astrophysical problems, Astron. Astrophys. 149, 135 (1985).

23. O. Flebbe, S. Münzel, H. Herold, H. Riffert, and H. Ruder, Smoothed 29. J. P. Morris, Analysis of Smoothed Particle Hydrodynamics with Appli-
Particle Hydrodynamics: Physical viscosity and the simulation of ac- cations, Ph.D. thesis, Monash University, Melbourne, Australia, 1996.
cretion disks, Astrophys. J. 431, 754 (1994). 30. N. Epstein and J. H. Masliyah, Creeping flow through clusters of

24. S. J. Watkins, A. S. Bhattal, N. Francis, J. A. Turner, and A. P. spheroids and elliptical cylinders, Chem. Enj. J. 3, 169 (1972).
Whitworth, A new prescription for viscosity in Smoothed Particle 31. J. E. Drummond and M. I. Tahir, Laminar viscous flow through
Hydrodynamics, Astron. Astrophys. Suppl. Ser. 119, 177 (1996). regular arrays of parallel solid cylinders, Int. J. Multiphase Flow 10,

25. L. Brookshaw, A method of calculating radiative heat diffusion in 515 (1984).
particle simulations, Proc. Astron. Soc. Aust. 6, 207, (1985). 32. G. W. Jackson and D. F. James, The permeability of fibrous porous

media, Can. J. Chem. Eng. 64, 364 (1986).26. J. J. Monaghan, Heat conduction with discontinuous conductivity,


